3500U201 01

3500U20-1

COMPUTER SCIENCE UNIT 2: Computational Thinking and Programming

THURSDAY, 16 MAY 2019 - AFTERNOON

2 hours

ADDITIONAL MATERIALS

Your computer should be pre-installed with text editing software, a word processing package and a functional copy of version 2.4.2 of the Greenfoot IDE.

INSTRUCTIONS TO CANDIDATES

You will need to enter your answers to questions 1, 3, 4, 5, 6 and 8 into the electronic answer document provided.

You will need to create a new plain text file to answer question 2.

You will complete the work for question 7 and 9 within the Greenfoot IDE.

Carry out all tasks and save your work regularly.

INFORMATION FOR CANDIDATES

The total number of marks available for this examination is 60.

The number of marks is given in brackets at the end of each question or part-question.

- **1.** State the HTML tags needed to:
 - (a) indicate where the header metadata should be stored.
 - (b) add a list item.
 - (c) define an image.
 - (d) specify a section of text that is quoted from another source.

Enter your answers into the electronic answer document.

2. A draft design for an HTML web page is shown below.

[10]

[4]

TrackMyPetCare.com
The new online system for keeping track of all your pets' needs, including:
 Vet check-ups Booster dates Birthdays and other anniversaries!
Click the link below to find out more:
www.TrackMyPetCare.com

3500U201 03

The design was then improved using various HTML tags to provide the formatting and content shown below.

Copy the text from the electronic answer document into a basic text editor.

Insert the HTML tags that would be needed to display the content and formatting shown in the improved design.

The image file you require is called:	pets.jpg
The page title should be set to:	Track My Pet Care
Save your new web page as:	finalPet.txt

© WJEC CBAC Ltd.

[4]

[4]

- 3. State the assembly language mnemonic to:
 - (a) input a value.
 - (b) create a data definition.
 - (c) branch the program execution.
 - (d) subtract a value from a register.

Enter your answers into the electronic answer document.

4. Below is an algorithm:

```
1
    total is integer
2
    set total = 0
3
    Declare Subroutine CountUp
4
      counter is integer
5
      set counter = 0
      output "About to count"
б
7
      do
8
        counter = counter + 1
9
        total = total + counter
        output "Count is ", counter
10
11
      while counter < 3
                              {Note: the loop has ended here}
12
      output "Count complete, total is ", total
13
    End Subroutine
```

From the algorithm identify an example of:

- (a) a local variable
- (b) a global variable
- (c) annotation
- (d) assignment

Enter your answers into the electronic answer document.

5. Below is an algorithm:

```
1
    outValue is integer
2
    set outValue = 0
3
    Declare Subroutine Multi
4
5
     for i = 1 to 3
б
7
      for j = 1 to 3
       outValue = i * j
8
9
       output outValue
10
     next j
     next i
11
12
13
    End Subroutine
```

Complete the table in the electronic answer document to show all the outputs of this algorithm. [9]

3500U201 05

6. An algorithm is required to help scientists monitor the level of a pollutant in a river. They take four readings of the level of pollutant in the river then use a computer to analyse the data. The value of each reading will be an integer in a range from 1 - 10.

The algorithm should:

- accept the input of each reading
- output the total of all the numbers entered
- output the mean of all the numbers entered
- output the largest number entered
- output the smallest number entered

An example of the *input* and output required is shown below.

Enter reading: **6** Enter reading: **3** Enter reading: **2** Enter reading: **4** Total: 15 Mean: 3.75 Largest: 6 Smallest: 2

Write an algorithm to meet these requirements. Enter your algorithm into the electronic answer document. [6]

- 7. A pet shop would like a new scenario created using the Java programming language within the Greenfoot environment. [5]
 - (a) Create a new world in the Greenfoot environment called **tank**. Set the background image within this world to a 9 x 9 grid using the image water.jpg
 - (b) Create a new class called **fish** and set the image of this class to fish.jpg Populate the world with two **fish**.
 - (c) Create a new class called **shark** and add code to this class to allow the **shark** to move and turn at random. Set the image of this class to shark.jpg Populate the world with two **sharks**.
 - (d) Create a new class called **crab**. Add code to this class to allow the **crab** to move only left and right at random. Set the image of this class to crab.jpg Populate the world with a **crab**.
 - (e) Save your completed world as finalAquarium7

All of the images you require are in the Aquarium\images folder.

8. Open the Greenfoot world WJECAnts8 and familiarise yourself with its contents. [5]
 From the Greenfoot world WJECAnts8 identify an example of a:

(a) superclass

- (b) class
- (c) private property
- (d) comment
- (e) method which is automatically run in each frame

Enter your answers into the electronic answer document.

- 9. Open the Greenfoot world WJECAnts9 and familiarise yourself with its contents. Complete the world as instructed below: [13]
 - (a) Populate the world with an **ant**, a **waterDrop** and at least two instances of **sugarCube**.
 - (b) Edit the **waterDrop** and **sugarCube** objects so that they turn and move around the world at random.
 - (c) Edit the **ant** object so that it moves at an appropriate speed in the direction of the arrow keys when pressed.
 - (d) Edit the **ant** object so that it "eats" a **sugarCube** when they collide (removes the **sugarCube** from the world).
 - (e) Add a sound which will play every time the **ant** "eats" a **sugarCube**.
 - (f) Add a **counter**. Edit the code so that the **counter** displays how many **sugarCubes** have been "eaten".
 - (g) Edit the code so that the **counter** loses a point (1 point is deducted) if the **ant** collides with a **waterDrop**.
 - (h) Save your completed world as finalAnts9

END OF PAPER

BLANK PAGE

10

BLANK PAGE